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Abstract. A Cayley tree model for activation entropy-nthalpy compensation in charge 
transport kinetic processes is extended to cover the anticompensation mode. The present 
model incorporates a negative confinement entropy contribution due to the finite spatial 
extension of the activation complex. 

1. Introduction 

Certain groups of thermally activated processes can be characterized by a linear relation- 
ship between the logarithm of the pre-exponential factor in the Arrhenius-type 
expression for the rate constant and the corresponding energy of activation [1-4]. In 
charge transfer in solids, this dependence is known as the Meyer-Neldel rule [2-4]. In 
such cases, the temperature dependence of the rate constant can be expressed by 

r exp(-(E,/k)(llT - 1Pd) (1) 

where r is the rate constant, E, is the activation energy and To is a constant characteristic 
of a particular group of thermally activated processes. According to the activation 
complex theory, the relationship given in (1) is equivalent to a linear dependence 
between the enthalpies and the entropies of activation in a particular group of thermally 
activatedprocesses. Thisdependence is known as the kineticcompensationeffect. where 
To indicates the temperature for which all the kinetic processes in the group have the 
same rate constant independent of the particular activation energy [l]. 

A simple model for an activation complex characterized by (1) was suggested in a 
previous publication [ 5 ] .  This model consists of a spatially distributed hierarchy of self- 
similar activation steps represented by the branchingpoints on a Cayley tree. Thecharge 
is transferred from the top of the tree to its base. Every additional branching point 
crossed adds one unit of energy to the overall activation energy and multiplies the 
number of the available pathways by the factor a. For a binary Cayley tree, a = 2. The 
total energy of activation is then linearly proportional to .U, the number of activation 
steps or  tree levels. The number of the available pathways is 2", so the entropy of 
activation, k ln(2"), is also linearly proportional to n .  The total energy of activation is 
then linearly dependent on the entropy of activation. Note that in this early model, the 
only Contribution to the entropy of activation is the exponential increase in the number 
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Figure 1. A schematic representation of a two- 
level binary tree. The pathways connecting the 
top of the tree to its base are of a fixed linear 
length. L ,  In thespecificcaseillustrated. the ratio, 
q. between the lengthsdthe successive branches 
is, (\q- l)/2. The owrall length of two suc. 
cessive branches, L9 + Lg2. is then exactly L. In 
the case ofq- t .  the Successive branches form an 
infinite geometrical series with the total length 
converging to L. N denotes the level number of 
the tree. . , , ., 

of the available pathways with the number of the tree levels, n .  An additional con- 
tribution to the entropy of activation in finite-length trees comes from the spatial 
constraint to the activation barrier crossing as it occurs at a definite spatial position 
determined by the locationof the maximum of theenergy barrier. Thiscontribution and 
its dependence on the geometry of the Cayley tree will be discussed below 

2. The model 

The maximum of the energy barrier in the Cayley tree model for the activation complex 
is the base of the tree [ 5 ] .  In a realistic model for the activation complex, the linear 
extension of the pathways connecting the top of the tree and its base should be finite. 
This length will have afinite value, provided the lengthsof the successive branchesform 
a converging geometrical series. Given a finite total length L. and a constant ratio 
between the lengths of the successive levels, the number of the levels in the tree can be 
obtained from 

L = Lq + L9' + Lq3 + . . . t Lq"-l = L ( l  -@)/ ( I  - q) - L (2) 
where the right-hand side of the equation contains the well known expression for the 
sum of the geometrical series, L + L9 + Lq: t . . , t Lq"- l .  Note that the number of 
levels is the integer, n,  minus one, as the first level of the tree corresponds to the second 
member of the geometrical series, L + Lq + Lq' + . . . , (see figure 1). An explicit 
expression for n can be obtained from (2) in the form 

2(1 - q) = (1 - 4") 

n = h ( 2 q  - 1)jln q. 
Or 

(3) 
Forq-, &, thenumberoftreelevelsapproachesinfinity,whileforq-t 1, thevariable 

n approaches 2 which is equivalent to a single level as discussed above. In the first case, 
lengths of branches of the base level approach zero, while in the second case the entire 
tree is a single level consisting of CY branches of length L .  For many-level trees, i.e. for 
q+ &, the number of levels, N, can be expressed as N = n - 1 = n.  

The entropic contribution due to the confinement of particles to a fraction. x ,  of a 
total available space is [6] k Inx per particle. In the present case, particles at level n 
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occupy a fraction LqnfL = q" of the total linear extent, L .  Therefore the entropic 
contribution due to spatial confinement is k In 4". In the case of q +  4, the particles 
reaching the base are confined to infinitesimally small branches leading to a large 
negative entropy contribution. While this has the effect of increasing the free energy of 
activation and decreasing the rate constant, the probability of charge transfer from the 
base levels approaches unity as the charges are localized exactly at the base edge of the 
tree. For finite-extent base levels, the probability of charge transfer is one minus the 
value of the probability of finding the particle inside the entire tree. 

From (3), the probability of charge transfer from the base level, 1 - q", is equal 
to 2(1 - 9). For q = 0.501 and q = 0.50001, the transfer probabilities are 0.998 and 
0.999 98, respectively. Thus, in the vicinity of q = B ,  the transfer probability depends 
marginally on q and its value is =1. In other words, any charge reaching the base level 
has a unit probability of crossing the barrier, In this case, the temperature-independent 
pre-exponential factor in the Arrhenius expression for the rate constant is a function of 
the confinement and branching entropies only. Using (3), the confinement entropies, 
nk(lnq), for q = 0.501 and q = 0.50001 are -6.21k and -10.82k respectively. This 
significant dependence of the confinement entropy on q results from the fact that 
the expression, nk(ln q), is dominated by the diverging factor n,  for q-f B .  Both the 
confinement entropy, nk(ln 4). and the branching entropy, nk(ln a), are linearly depen- 
dent on the diverging factor n, for q- 4. The total entropic contribution at q+ 1 is 
therefore 

AS: = &(In q) + nk(ln a) = nk(ln qa). (4) 
Using the explicit expression for n as a function of q in (3). 

The total enthalpy of activation is the single-step enthalpy, E ,  times the number of the 
levels: 

E ln(2q - 1) 

In 4 
AH* = 

Comparison of (5) and (6) shows an asymptotically linear dependence between AS* and 
AH' for q - i. as both expressions diverge with the same factor, ln(2q - 1)iln q,  while 
the factor In(qa) approaches a constant. The asymptotically linear relationship between 
AS* and AH* in the vicinity of q = +can be verified by substitution of 0.501 > q > 4 into 
(5) and (6). The compensation temperature, To = AHi/ASf, is given by 

To = E l k  In(qa). (7) 

Forabinary tree (CY = 2), and theasymptoticconditiongivenbyq- B ,  thecompensation 
temperature approaches infinity. An infinite compensation temperature is equivalent 
to a normal Arrhenius behaviour or to isoentropic kinetics with the pre-exponential 
factor independent of the activation enthalpy (see (1)). In this case, the confinement 
factor is the inverse of the branching factor at all levels of the tree. Therefore the overall 
entropy change is zero, irrespective of the number of the tree levels and of the overall 
enthalpy of activation. This is in contrast with the earlier model [ 5 ] ,  where an infinite 
compensation temperature occurs at a = 1. In the present case, the non-branching 
activation complex (a  = 1) is characterized by a negative compensation temperature, 
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To = -&(In 2 ) / k .  Negative compensation temperatures are not experimental tem- 
peratures as they are derived from an extrapolation of the Arrhenius-type plots and 
indicate the position of the intersection point of the plats relative to the 1/T axis. 
Negative compensation temperatures were derived from the experimental data for 
several systems [l]. The physical significance of the negative compensation temperatures 
is the anticompensation behaviour. i.e. the logarithm of the pre-exponential factor 
decreases linearly with an increase of the activation energy [1,7]. According to the 
present model, anticompensation is the result of an increasingly negative contribution 
from theconfinemententropyasthenumberofthe treelevelsandtheactivationenthalpy 
increase, whereas the positive entropic contribution from branching is absent ( E  = 1). 
Positive compensation occurs in trees with n > 3. where the positive branchingentropy 
contribution is larger than the negative confinement entropy contribution. 

The fractal dimension of a non-compensating tree is 

It should be noted that this fractal dimension is larger by unity than that of the non- 
compensating tree of the earlier model, which is characterized by n = 1 and D, = 0. The 
extra dimension provides the additional degree of freedom for the compensation of the 
negative entropy contribution introduced in the present model. The negative entropy 
contribution uncompensated for by the positive branching contribution in the case of 
n = 1, and Dr = 0, results in there being an anticompensation kinetic effect. 

The lowest-dimension (or = 0) tree of the earlier model is not anticompensating, as 
it  does not include the negative confinement entropy contribution as noted above. 

3. Conclusion 

The constraint of finite-length conduction pathways in an activation complex adds a 
negative confinement entropy contribution to the positive branching entropy con- 
tribution inherent to the Cayley tree model. The interdependence between the number 
of levels in the tree and the ratio between the lengths of successive levels, imposed by 
the finite-length constraint, results in an asymptotically linear relationship between the 
entropies and enthalpies of activation in many-level trees. The negative confinement 
entropy contribution extends the former model [5]  tocover the anticompensation mode. 
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